Industrial networks become increasingly interconnected, which opens the floodgates for cyberattacks on legacy networks designed without security in mind. Consequently, the vast landscape of legacy industrial communication protocols urgently demands a universal solution to integrate security features retroactively. However, current proposals are hardly adaptable to new scenarios and protocols, even though most industrial protocols share a common theme: Due to their progressive development, previously important legacy features became irrelevant and resulting unused protocol fields now offer a unique opportunity for retrofitting security. Our analysis of three prominent protocols shows that headers offer between 36 and 63 bits of unused space. To take advantage of this space, we designed the REtrofittable ProtEction Library (RePeL), which supports embedding authentication tags into arbitrary combinations of unused header fields. We show that RePeL incurs negligible overhead beyond the cryptographic processing, which can be adapted to hit performance targets or fulfill legal requirements.