METRICS: A Methodology for Evaluating and Testing the Resilience of Industrial Control Systems to Cyberattacks

Abstract

The increasing digitalization and interconnectivity of industrial control systems (ICSs) create enormous benefits, such as enhanced productivity and flexibility, but also amplify the impact of cyberattacks. Cybersecurity research thus continuously needs to adapt to new threats while proposing comprehensive security mechanisms for the ICS domain. As a prerequisite, researchers need to understand the resilience of ICSs against cyberattacks by systematically testing new security approaches without interfering with productive systems. Therefore, one possibility for such evaluations is using already available ICS testbeds and datasets. However, the heterogeneity of the industrial landscape poses great challenges to obtaining comparable and transferable results. In this paper, we propose to bridge this gap with METRICS, a methodology for systematic resilience evaluation of ICSs. METRICS complements existing ICS testbeds by enabling the configuration of measurement campaigns for comprehensive resilience evaluations. Therefore, the user specifies individual evaluation scenarios consisting of cyberattacks and countermeasures while facilitating manual and automatic interventions. Moreover, METRICS provides domain-agnostic evaluation capabilities to achieve comparable results, which user-defined domain-specific metrics can complement. We apply the methodology in a use case study with the power grid simulator Wattson, demonstrating its effectiveness in providing valuable insights for security practitioners and researchers.

Type
Conference paper
Publication
In 8th Workshop on the Security of Industrial Control Systems & of Cyber-Physical Systems (CyberICPS 2023)